Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Am J Kidney Dis ; 2023 May 30.
Article in English | MEDLINE | ID: covidwho-20239647

ABSTRACT

RATIONALE & OBJECTIVE: Patients hospitalized with COVID-19 are at increased risk for major adverse kidney events (MAKE). We sought to identify plasma biomarkers predictive of MAKE in patients hospitalized with COVID-19. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: A total of 576 patients hospitalized with COVID-19 between March 2020 and January 2021 across 3 academic medical centers. EXPOSURE: Twenty-six plasma biomarkers of injury, inflammation, and repair from first available blood samples collected during hospitalization. OUTCOME: MAKE, defined as KDIGO stage 3 acute kidney injury (AKI), dialysis-requiring AKI, or mortality up to 60 days. ANALYTICAL APPROACH: Cox proportional hazards regression to associate biomarker level with MAKE. We additionally applied the least absolute shrinkage and selection operator (LASSO) and random forest regression for prediction modeling and estimated model discrimination with time-varying C index. RESULTS: The median length of stay for COVID-19 hospitalization was 9 (IQR, 5-16) days. In total, 95 patients (16%) experienced MAKE. Each 1 SD increase in soluble tumor necrosis factor receptor 1 (sTNFR1) and sTNFR2 was significantly associated with an increased risk of MAKE (adjusted HR [AHR], 2.30 [95% CI, 1.86-2.85], and AHR, 2.26 [95% CI, 1.73-2.95], respectively). The C index of sTNFR1 alone was 0.80 (95% CI, 0.78-0.84), and the C index of sTNFR2 was 0.81 (95% CI, 0.77-0.84). LASSO and random forest regression modeling using all biomarkers yielded C indexes of 0.86 (95% CI, 0.83-0.89) and 0.84 (95% CI, 0.78-0.91), respectively. LIMITATIONS: No control group of hospitalized patients without COVID-19. CONCLUSIONS: We found that sTNFR1 and sTNFR2 are independently associated with MAKE in patients hospitalized with COVID-19 and can both also serve as predictors for adverse kidney outcomes. PLAIN-LANGUAGE SUMMARY: Patients hospitalized with COVID-19 are at increased risk for long-term adverse health outcomes, but not all patients suffer long-term kidney dysfunction. Identification of patients with COVID-19 who are at high risk for adverse kidney events may have important implications in terms of nephrology follow-up and patient counseling. In this study, we found that the plasma biomarkers soluble tumor necrosis factor receptor 1 (sTNFR1) and sTNFR2 measured in hospitalized patients with COVID-19 were associated with a greater risk of adverse kidney outcomes. Along with clinical variables previously shown to predict adverse kidney events in patients with COVID-19, both sTNFR1 and sTNFR2 are also strong predictors of adverse kidney outcomes.

2.
Diagnostics (Basel) ; 13(4)2023 Feb 12.
Article in English | MEDLINE | ID: covidwho-2232293

ABSTRACT

BACKGROUND: COVID-19 is a heterogenous disease resulting in long-term sequela in predisposed individuals. It is not uncommon that recovering patients endure non-respiratory ill-defined manifestations, including anosmia, and neurological and cognitive deficit persisting beyond recovery-a constellation of conditions that are grouped under the umbrella of long-term COVID-19 syndrome. Association between COVID-19 and autoimmune responses in predisposed individuals was shown in several studies. AIM AND METHODS: To investigate autoimmune responses against neuronal and CNS autoantigens in SARS-CoV-2-infected patients, we performed a cross-sectional study with 246 participants, including 169 COVID-19 patients and 77 controls. Levels of antibodies against the acetylcholine receptor, glutamate receptor, amyloid ß peptide, alpha-synucleins, dopamine 1 receptor, dopamine 2 receptor, tau protein, GAD-65, N-methyl D-aspartate (NMDA) receptor, BDNF, cerebellar, ganglioside, myelin basic protein, myelin oligodendrocyte glycoprotein, S100-B, glial fibrillary acidic protein, and enteric nerve were measured using an Enzyme-Linked Immunosorbent Assay (ELISA). Circulating levels of autoantibodies were compared between healthy controls and COVID-19 patients and then classified by disease severity (mild [n = 74], severe [n = 65], and requiring supplemental oxygen [n = 32]). RESULTS: COVID-19 patients were found to have dysregulated autoantibody levels correlating with the disease severity, e.g., IgG to dopamine 1 receptor, NMDA receptors, brain-derived neurotrophic factor, and myelin oligodendrocyte glycoprotein. Elevated levels of IgA autoantibodies against amyloid ß peptide, acetylcholine receptor, dopamine 2 receptor, myelin basic protein, and α-synuclein were detected in COVID-19 patients compared with healthy controls. Lower IgA autoantibody levels against NMDA receptors, and IgG autoantibodies against glutamic acid decarboxylase 65, amyloid ß peptide, tau protein, enteric nerve, and S100-B were detected in COVID-19 patients versus healthy controls. Some of these antibodies have known clinical correlations with symptoms commonly reported in the long COVID-19 syndrome. CONCLUSIONS: Overall, our study shows a widespread dysregulation in the titer of various autoantibodies against neuronal and CNS-related autoantigens in convalescent COVID-19 patients. Further research is needed to provide insight into the association between these neuronal autoantibodies and the enigmatic neurological and psychological symptoms reported in COVID-19 patients.

3.
J Med Virol ; 95(2): e28538, 2023 02.
Article in English | MEDLINE | ID: covidwho-2219761

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients.


Subject(s)
Autoimmune Diseases , COVID-19 , Aged , Humans , Autoantibodies , Cross-Sectional Studies , SARS-CoV-2 , Immunoglobulin G
4.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: covidwho-2196020

ABSTRACT

In patients with severe #COVID19, increased levels of autoantibodies against PAR1 were found. These might serve as allosteric agonists of PAR1 on endothelial cells and platelets, and thus might contribute to the pathogenesis of microthrombosis in COVID-19. https://bit.ly/3pqM9Vv.

5.
Sci Adv ; 8(48): eadd4150, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2137354

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor α (ERα). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ERα lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ERα and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ERα interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Cricetinae , Humans , Receptors, Estrogen , Estrogen Receptor alpha , SARS-CoV-2
6.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-2073889

ABSTRACT

Immune perturbation is a hallmark of Coronavirus Disease 2019 (COVID-19) with ambiguous roles of various immune cell compartments. Plasma cells, responsible for antibody production, have a two-pronged response while mounting an immune defence with 1) physiological immune response producing neutralizing antibodies against protein structures of SARS-CoV-2 and 2) potentially deleterious autoantibody generation. Growing evidence hints towards broad activation of plasma cells and the presence of pathologic autoantibodies (abs) that mediate immune perturbation in acute COVID-19 [1]. Recently, a systematic screening for abs confirmed induction of diverse functional abs in SARS-CoV-2 infection, targeting several immunomodulatory proteins, including cytokines/chemokines and their respective G-protein coupled receptors (GPCR) [1]. Abs against GPCR act as agonistic and allosteric receptor modulators and are linked to chronic inflammatory diseases [2] and, as we recently demonstrated, disease severity in acute COVID-19 [3].

7.
JCI Insight ; 7(18)2022 09 22.
Article in English | MEDLINE | ID: covidwho-2038420

ABSTRACT

Cross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses. Using artificial antigen-presenting cells (aAPCs) combined with real-time reverse-transcription PCR (RT-qPCR), we developed a sensitive assay to quickly screen for antigen-specific T cell responses and detected a significant correlation between responses to SARS-CoV-2 epitopes and IAV dominant epitope (M158-66). Further analysis showed that some COVID-19 convalescent donors exhibited both T cell receptor (TCR) specificity and functional cytokine responses to multiple SARS-CoV-2 epitopes and M158-66. Utilizing an aAPC-based stimulation/expansion assay, we detected cross-reactive T cells with specificity to SARS-CoV-2 and IAV. In addition, TCR sequencing of the cross-reactive and IAV-specific T cells revealed similarities between the TCR repertoires of the two populations. These results indicate that heterologous immunity shaped by our exposure to other unrelated endemic viruses may affect our immune response to novel viruses such as SARS-CoV-2.


Subject(s)
COVID-19 , Influenza, Human , Antigens, Viral , CD8-Positive T-Lymphocytes , Cytokines , Epitopes , Humans , Receptors, Antigen, T-Cell , SARS-CoV-2
8.
Nat Biomed Eng ; 6(8): 992-1003, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000897

ABSTRACT

Pathogenic autoreactive antibodies that may be associated with life-threatening coronavirus disease 2019 (COVID-19) remain to be identified. Here, we show that self-assembled genome-scale libraries of full-length proteins covalently coupled to unique DNA barcodes for analysis by sequencing can be used for the unbiased identification of autoreactive antibodies in plasma samples. By screening 11,076 DNA-barcoded proteins expressed from a sequence-verified human ORFeome library, the method, which we named MIPSA (for Molecular Indexing of Proteins by Self-Assembly), allowed us to detect circulating neutralizing type-I and type-III interferon (IFN) autoantibodies in five plasma samples from 55 patients with life-threatening COVID-19. In addition to identifying neutralizing type-I IFN-α and IFN-ω autoantibodies and other previously known autoreactive antibodies in patient plasma, MIPSA enabled the detection of as yet unidentified neutralizing type-III anti-IFN-λ3 autoantibodies that were not seen in healthy plasma samples or in convalescent plasma from ten non-hospitalized individuals with COVID-19. The low cost and simple workflow of MIPSA will facilitate unbiased high-throughput analyses of protein-antibody, protein-protein and protein-small-molecule interactions.


Subject(s)
Autoantibodies , COVID-19 , COVID-19/therapy , Gene Library , Humans , Immunization, Passive , Interferon-alpha , COVID-19 Serotherapy
9.
PLoS One ; 17(8): e0271310, 2022.
Article in English | MEDLINE | ID: covidwho-1974317

ABSTRACT

BACKGROUND: COVID-19 can cause some individuals to experience chronic symptoms. Rates and predictors of chronic COVID-19 symptoms are not fully elucidated. OBJECTIVE: To examine occurrence and patterns of post-acute sequelae of SARS-CoV2 infection (PASC) symptomatology and their relationship with demographics, acute COVID-19 symptoms and anti-SARS-CoV-2 IgG antibody responses. METHODS: A multi-stage observational study was performed of adults (≥18 years) from 5 US states. Participants completed two rounds of electronic surveys (May-July 2020; April-May 2021) and underwent testing to anti-SARS-CoV-2 nucleocapsid protein IgG antibody testing. Latent Class Analysis was used to identify clusters of chronic COVID-19 symptoms. RESULTS: Overall, 390 adults (median [25%ile, 75%ile] age: 42 [31, 54] years) with positive SARS-CoV-2 antibodies completed the follow-up survey; 92 (24.7%) had ≥1 chronic COVID-19 symptom, with 11-month median duration of persistent symptoms (range: 1-12 months). The most common chronic COVID-19 symptoms were fatigue (11.3%), change in smell (9.5%) or taste (5.6%), muscle or joint aches (5.4%) and weakness (4.6%). There were significantly higher proportions of ≥1 persistent COVID-19 symptom (31.5% vs. 18.6%; Chi-square, P = 0.004), and particularly fatigue (15.8% vs. 7.3%, P = 0.008) and headaches (5.4% vs. 1.0%, P = 0.011) in females compared to males. Chronic COVID-19 symptoms were also increased in individuals with ≥6 acute COVID-19 symptoms, Latent class analysis revealed 4 classes of symptoms. Latent class-1 (change of smell and taste) was associated with lower anti-SARS-CoV-2 antibody levels; class-2 and 3 (multiple chronic symptoms) were associated with higher anti-SARS-CoV-2 antibody levels and more severe acute COVID-19 infection. LIMITATIONS: Ambulatory cohort with less severe acute disease. CONCLUSION: Individuals with SARS-CoV-2 infection commonly experience chronic symptoms, most commonly fatigue, changes in smell or taste and muscle/joint aches. Female sex, severity of acute COVID-19 infection, and higher anti-SARS-CoV-2 IgG levels were associated with the highest risk of having chronic COVID-19 symptoms.


Subject(s)
COVID-19 , Adult , Antibodies, Viral , Fatigue , Female , Humans , Immunoglobulin G , Male , Pain , RNA, Viral , SARS-CoV-2
10.
Pathophysiology ; 29(2): 243-280, 2022 Jun 03.
Article in English | MEDLINE | ID: covidwho-1884302

ABSTRACT

In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called "the autoimmune virus." We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.

11.
Nat Commun ; 13(1): 1220, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1735246

ABSTRACT

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Receptors, G-Protein-Coupled/immunology , Renin-Angiotensin System/immunology , Autoantibodies/blood , Autoimmunity , Biomarkers/blood , COVID-19/blood , COVID-19/classification , Cross-Sectional Studies , Female , Humans , Machine Learning , Male , Multivariate Analysis , Receptor, Angiotensin, Type 1/immunology , Receptors, CXCR3/immunology , SARS-CoV-2 , Severity of Illness Index
12.
J Allergy Clin Immunol Pract ; 9(9): 3331-3338.e2, 2021 09.
Article in English | MEDLINE | ID: covidwho-1693328

ABSTRACT

BACKGROUND: The complex relationship between clinical manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and individual immune responses is not fully elucidated. OBJECTIVE: To examine phenotypes of symptomatology and their relationship with positive anti-SARS-CoV-2 IgG antibody responses. METHODS: An observational study was performed of adults (≥18 years) from 5 US states. Participants completed an electronic survey and underwent testing to anti-SARS-CoV-2 nucleocapsid protein IgG antibody between May and July 2020. Latent class analysis was used to identify characteristic symptom clusters. RESULTS: Overall, 9507 adults (mean age, 39.6 ± 15.0 years) completed the survey; 6665 (70.1%) underwent antibody testing for anti-SARS-CoV-2 IgG. Positive SARS-CoV-2 antibodies were associated with self-reported positive SARS-CoV-2 nasal swab result (bivariable logistic regression; odds ratio [95% CI], 5.98 [4.83-7.41]), household with 6 or more members (1.27 [1.14-1.41]) and sick contact (3.65 [3.19-4.17]), and older age (50-69 years: 1.55 [1.37-1.76]; ≥70 years: 1.52 [1.16-1.99]), but inversely associated with female sex (0.61 [0.55-0.68]). Latent class analysis revealed 8 latent classes of symptoms. Latent classes 1 (all symptoms) and 4 (fever, cough, muscle ache, anosmia, dysgeusia, and headache) were associated with the highest proportion (62.0% and 57.4%) of positive antibodies, whereas classes 6 (fever, cough, muscle ache, headache) and 8 (anosmia, dysgeusia) had intermediate proportions (48.2% and 40.5%), and classes 3 (headache, diarrhea, stomach pain) and 7 (no symptoms) had the lowest proportion (7.8% and 8.5%) of positive antibodies. CONCLUSIONS: SARS-CoV-2 infections manifest with substantial diversity of symptoms, which are associated with variable anti-SARS-CoV-2 IgG antibody responses. Prolonged fever, anosmia, and receiving supplemental oxygen therapy had strongest associations with positive SARS-CoV-2 IgG.


Subject(s)
COVID-19 , Adult , Aged , Antibodies, Viral , Cross-Sectional Studies , Female , Humans , Immunoglobulin G , Middle Aged , SARS-CoV-2
13.
EBioMedicine ; 75: 103812, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1639102

ABSTRACT

BACKGROUND: Thromboembolism is a life-threatening manifestation of coronavirus disease 2019 (COVID-19). We investigated a dysfunctional phenotype of vascular endothelial cells in the lungs during COVID-19. METHODS: We obtained the lung specimens from the patients who died of COVID-19. The phenotype of endothelial cells and immune cells was examined by flow cytometry and immunohistochemistry (IHC) analysis. We tested the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the endothelium using IHC and electron microscopy. FINDINGS: The autopsy lungs of COVID-19 patients exhibited severe coagulation abnormalities, immune cell infiltration, and platelet activation. Pulmonary endothelial cells of COVID-19 patients showed increased expression of procoagulant von Willebrand factor (VWF) and decreased expression of anticoagulants thrombomodulin and endothelial protein C receptor (EPCR). In the autopsy lungs of COVID-19 patients, the number of macrophages, monocytes, and T cells was increased, showing an activated phenotype. Despite increased immune cells, adhesion molecules such as ICAM-1, VCAM-1, E-selectin, and P-selectin were downregulated in pulmonary endothelial cells of COVID-19 patients. Notably, decreased thrombomodulin expression in endothelial cells was associated with increased immune cell infiltration in the COVID-19 patient lungs. There were no SARS-CoV-2 particles detected in the lung endothelium of COVID-19 patients despite their dysfunctional phenotype. Meanwhile, the autopsy lungs of COVID-19 patients showed SARS-CoV-2 virions in damaged alveolar epithelium and evidence of hypoxic injury. INTERPRETATION: Pulmonary endothelial cells become dysfunctional during COVID-19, showing a loss of thrombomodulin expression related to severe thrombosis and infiltration, and endothelial cell dysfunction might be caused by a pathologic condition in COVID-19 patient lungs rather than a direct infection with SARS-CoV-2. FUNDING: This work was supported by the Johns Hopkins University, the American Heart Association, and the National Institutes of Health.


Subject(s)
Blood Coagulation Disorders/metabolism , COVID-19/metabolism , Down-Regulation , Endothelium, Vascular/metabolism , Hypoxia/metabolism , Lung/metabolism , SARS-CoV-2/metabolism , Thrombomodulin/biosynthesis , Aged , Aged, 80 and over , Blood Coagulation Disorders/pathology , COVID-19/pathology , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Endothelium, Vascular/ultrastructure , Female , Humans , Hypoxia/pathology , Lung/ultrastructure , Male , Middle Aged
14.
Invest Ophthalmol Vis Sci ; 62(7): 6, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1388618

ABSTRACT

Purpose: To investigate the expression of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 in human retina. Methods: Human post-mortem eyes from 13 non-diabetic control cases and 11 diabetic retinopathy cases were analyzed for the expression of ACE2. To compare the vascular ACE2 expression between different organs that involve in diabetes, the expression of ACE2 was investigated in renal specimens from nondiabetic and diabetic nephropathy patients. Expression of TMPRSS2, a cell-surface protease that facilitates SARS-CoV-2 entry, was also investigated in human nondiabetic retinas. Primary human retinal endothelial cells (HRECs) and primary human retinal pericytes (HRPCs) were further used to confirm the vascular ACE2 expression in human retina. Results: We found that ACE2 was expressed in multiple nonvascular neuroretinal cells, including the retinal ganglion cell layer, inner plexiform layer, inner nuclear layer, and photoreceptor outer segments in both nondiabetic and diabetic retinopathy specimens. Strikingly, we observed significantly more ACE2 positive vessels in the diabetic retinopathy specimens. By contrast, in another end-stage organ affected by diabetes, the kidney, ACE2 in nondiabetic and diabetic nephropathy showed apical expression of ACE2 tubular epithelial cells, but no endothelial expression in glomerular or peritubular capillaries. Western blot analysis of protein lysates from HRECs and HRPCs confirmed expression of ACE2. TMPRSS2 expression was present in multiple retinal neuronal cells, vascular and perivascular cells, and Müller glia. Conclusions: Together, these results indicate that retina expresses ACE2 and TMPRSS2. Moreover, there are increased vascular ACE2 expression in diabetic retinopathy retinas.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Diabetic Retinopathy/enzymology , Receptors, Virus/metabolism , Retina/enzymology , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , Binding Sites , Blotting, Western , Cells, Cultured , Diabetic Nephropathies/enzymology , Diabetic Nephropathies/pathology , Diabetic Nephropathies/virology , Diabetic Retinopathy/pathology , Diabetic Retinopathy/virology , Endothelium, Vascular/enzymology , Endothelium, Vascular/virology , Female , Fluorescent Antibody Technique, Indirect , Humans , Immunohistochemistry , Male , Middle Aged , Pericytes/enzymology , Pericytes/virology , Retinal Vessels/enzymology , Retinal Vessels/pathology , Retinal Vessels/virology , Serine Endopeptidases/metabolism
15.
JAMA Netw Open ; 4(3): e212816, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1125118

ABSTRACT

Importance: Data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in the United States are still emerging. Objective: To elucidate SARS-CoV-2 seroprevalence and symptom onset in a culturally linked community across 5 states in the United States. Design, Setting, and Participants: This cross-sectional study included adults (aged ≥18 years) recruited from the orthodox Jewish community across 5 states (California, Connecticut, Michigan, New Jersey, and New York) in 3 geographically distinct areas of the United States between May 13 and July 6, 2020. Participants completed an online survey and underwent SARS-CoV-2 antibody testing. Main Outcomes and Measures: Seroprevalence and date of symptom onset of SARS-CoV-2. Results: Overall, 9507 adults (mean [SD] age, 39.6 [15.0] years; 3777 [39.7%] women) completed the SARS-CoV-2 survey, of whom 6665 (70.1%) had immunoglobin G anti-SARS-CoV-2 antibody levels assessed. A high seroprevalence of SARS-CoV-2 antibodies was observed across all communities, with the highest proportion of positive testing observed in New Jersey (1080 of 3323 [32.5%]) and New York (671 of 2196 [30.6%]). Most individuals with a positive SARS-CoV-2 immunoglobin G antibody test reported a date of symptom-onset between March 9 and March 31, 2020 (California: 135 of 154 [87.7%]; Connecticut: 32 of 34 [94.1%]; Michigan: 44 of 50 [88.0%]; New Jersey: 964 of 1168 [82.5%]; New York: 571 of 677 [84.3%]). This start date was coincident with the Jewish festival of Purim, celebrated March 9 to 10, 2020, with extensive intracommunity spread in the weeks following (mean and mode of peak symptom onset, March 20, 2020), occurring in the absence of strong general and culture-specific public health directives. Conclusions and Relevance: This cross-sectional study of orthodox Jewish adults across the US found that socioculturally bound communities experienced early parallel outbreaks in discrete locations, notably prior to substantive medical and governmental directives. Further research should clarify optimal national, local, community-based, and government policies to prevent outbreaks in social and cultural communities that traditionally gather for holidays, assemblies, and festivals.


Subject(s)
COVID-19/epidemiology , Culturally Competent Care , Disease Transmission, Infectious , Holidays , Jews/statistics & numerical data , Minority Groups , Public Health , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/transmission , COVID-19 Serological Testing , California/epidemiology , Connecticut/epidemiology , Cross-Sectional Studies , Disease Outbreaks , Female , Humans , Judaism , Male , Michigan/epidemiology , Middle Aged , New Jersey/epidemiology , New York/epidemiology , Residence Characteristics , SARS-CoV-2 , Seroepidemiologic Studies , United States/epidemiology , Young Adult
16.
Cell Rep ; 34(11): 108863, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1108116

ABSTRACT

It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Immunity/immunology , Adult , Aged , Aged, 80 and over , Apoptosis/immunology , Caspases/immunology , Caspases/metabolism , Female , Humans , Lymphopenia/immunology , Lymphopenia/metabolism , Male , Middle Aged , Mitochondria/immunology , Mitochondria/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Young Adult
17.
medRxiv ; 2020 Oct 05.
Article in English | MEDLINE | ID: covidwho-915966

ABSTRACT

It remains unclear why some patients infected with SARS-CoV-2 readily resolve infection while others develop severe disease. To address this question, we employed a novel assay to interrogate immune-metabolic programs of T cells and myeloid cells in severe and recovered COVID-19 patients. Using this approach, we identified a unique population of T cells expressing high H3K27me3 and the mitochondrial membrane protein voltage-dependent anion channel (VDAC), which were expanded in acutely ill COVID-19 patients and distinct from T cells found in patients infected with hepatitis c or influenza and in recovered COVID-19. Increased VDAC was associated with gene programs linked to mitochondrial dysfunction and apoptosis. High-resolution fluorescence and electron microscopy imaging of the cells revealed dysmorphic mitochondria and release of cytochrome c into the cytoplasm, indicative of apoptosis activation. The percentage of these cells was markedly increased in elderly patients and correlated with lymphopenia. Importantly, T cell apoptosis could be inhibited in vitro by targeting the oligomerization of VDAC or blocking caspase activity. In addition to these T cell findings, we also observed a robust population of Hexokinase II+ polymorphonuclear-myeloid derived suppressor cells (PMN-MDSC), exclusively found in the acutely ill COVID-19 patients and not the other viral diseases. Finally, we revealed a unique population of monocytic MDSC (M-MDSC) expressing high levels of carnitine palmitoyltransferase 1a (CPT1a) and VDAC. The metabolic phenotype of these cells was not only highly specific to COVID-19 patients but the presence of these cells was able to distinguish severe from mild disease. Overall, the identification of these novel metabolic phenotypes not only provides insight into the dysfunctional immune response in acutely ill COVID-19 patients but also provide a means to predict and track disease severity as well as an opportunity to design and evaluate novel metabolic therapeutic regimens.

SELECTION OF CITATIONS
SEARCH DETAIL